

Subscriber access provided by ISTANBUL TEKNIK UNIV

A New Diterpene from a Soft Coral, Sinularia dissecta

M. Venkata Rami Reddy, S. Lakshman, A. V. Rama Rao, Y. Venkateswarlu, and J. Venkateswara Rao

J. Nat. Prod., 1993, 56 (6), 970-972• DOI: 10.1021/np50096a028 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50096a028 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

A NEW DITERPENE FROM A SOFT CORAL, SINULARIA DISSECTA¹

M. VENKATA RAMI REDDY, S. LAKSHMAN, A.V. RAMA RAO, Y. VENKATESWARLU,* and J. VENKATESWARA RAO

Organic Chemistry Division I, Toxicology Unit, Indian Institute of Chemical Technology, Hyderabad 500007, India

ABSTRACT.—A highly oxygenated cembranoid 1 has been isolated as a minor constituent from a soft coral, *Sinularia dissecta*.

Following the isolation of the novel furanocembranoid diterpene pukalide [3] (1) from a soft coral, Sinularia abrupta, several related compounds, 11B,12Bepoxypukalide (2), 13α-acetoxy-11 β ,12 β -epoxypukalide (3), 13 α acetoxypukalide (3), and the bipinnatins (4), have been reported. As part of our search for biologically active compounds from marine sources, we investigated a soft coral, Sinularia dissecta (Tixier Durivault). The CH₂Cl₂-MeOH (1:1) extract of this soft coral afforded 9(15)africanene (5,6), pukalide, (+)- β -elemene (7), and a new diterpene 1 structurally related to pukalide [3].

Compound 1, $[\alpha]^{25}D - 8.7$ (CH₂Cl₂, c=0.12), analyzed for C₂₂H₂₈O₈ by microanalysis. Its mass spectrum exhibited only $[M-H_2O]^+$ peak at m/z 402 under a variety of conditions. The ir absorptions at 3460 and 1705 cm⁻¹ indicated the presence of hydroxy and carbonyl groups, respectively. Compound 1 readily formed a monoacetate, thus confirming the presence of a primary or secondary hydroxyl group.

The ¹H- and ¹³C-nmr spectra (Table 1) of compound **1** suggested the presence of an α, α' -dialkyl substituted β carboxymethylfuran function, an isopropenyl group, and a methyl group on a carbon bearing an hydroxyl; these corresponded to the C-1 to C-6 functionality of pukalide. Further, the ¹H- and ¹³C-nmr spectra of compound **1** indicated the presence of a carbonyl carbon $(^{13}C \delta 209.7 s)$, a trisubstituted double bond having a carbomethoxy group $[{}^{1}H\delta$ 7.0 (1H, t, J=6.4 Hz), 3.75 (3H, s); ¹³C δ 167.2 s, 143.6 d, 125.4 s, 52.1 g], and a methine carbon $[{}^{1}H \delta 4.63 (1H, s); {}^{13}C$ δ 73.5 d] bearing an hydroxyl group. The methine proton shifted upon acetylation to δ 5.8 (1H, s) in the ¹H-nmr spectrum of the acetate 2. The foregoing spectral data revealed that compound 1 was a diester, with no evidence for the γ -lactone functionality present in pukalide [3]. In the 'H-nmr spectrum of 1, large geminal couplings were observed in the

•	Compound		
Position	1		2
	ιH	¹³ C	¹ H
1	2.55 m (merged in one of the C-7 proton)	43.3 d	2.53 m
2	3.32 dd (J=15, 2) 2.85 dd ($J=15, 11$)	30.7 t	3.16 dd (J=15, 2.7) 2.92 dd (J=15, 10.7)
3		160.1 s	
4	_	114.8 s	
5	6.6 s	108.8 d	6.6 s
6	_	151.2 s	
7	3.16 d (J=18)	30.6 t	3.05 d (J=18)
8		74.2 s	-
9	3.5 d (J=17.5) 3.4 d (J=17.5)	46.4 t	3.54, d (J=17) 3.42 d (J=17)
10		209.7 s	
11	4.6 s	73.5 d	5.8 s
12		125.4 s	
13	7.0 t (J=7)	143.6 d	$6.97 \mathrm{dd} (I=5.7,9.1)$
14	2.36 m	42.2 t	2.28 m
15	_	145.5 s	_
16	4.97 s	111.9 t	4.92 s
	4. 89 s		4.86 s
17	1.83 s	20.9 g	1.81 s
18		163.9 s	
19	1.24 s	24.4 q	1.24 s
20	—	167.2 s	—
21	3.8 s	51.4 q	3.78 s
22	3.75 s	52.1 q	3.74 s

TABLE 1. ¹H- and ¹³C-nmr Data of Compound **1** and ¹H Nmr of Its Acetate **2** [chemical shift δ (ppm), multiplicity, J values in Hz] in CDCl₃.

region between δ 2.3 and 3.6. The assigned values for the C-7 methylene protons were consistent with those observed in hexahydropukalide (1). In the ¹H-nmr spectrum of **1**, the signals for the C-1 methine and one of the C-7 methylene protons were overlapping. However, in the ¹H-nmr spectrum, when measured in CDCl₃ containing few drops of C₆D₆, H-1 shifted to δ 2.6 (1H, m).

The COLOC (3J) experiment revealed the disposition of carbonyl carbon, trisubstituted double bond, and the methine carbon bearing an hydroxyl group of **1**. A methyl proton signal at δ 1.24 was correlated with two methylene signals at δ 30.6 t, 46.4 t and with a quarternary carbon at δ 74.2 s. Isolated methylene proton signals at δ 3.5 (d, 1H, J=17.5 Hz) and 3.4 (d, 1H, J=17.5 Hz) were coupled to a methyl signal at δ 24.4 g, to a quarternary carbon at δ 74.2 s, to a carbonyl carbon at δ 209.7 s, and to a methine carbon at δ 73.5 d, bearing an hydroxyl. Further, a multiplet signal at δ 2.36 was coupled to a olefinic signal at δ 125.4 s. In an nOe experiment, irradiation of the methyl signal at δ 1.24 caused enhancement of the signal at δ 4.6. The low field signal at δ 7.0 in the ¹H-nmr spectrum of **1** corresponding to the α , β unsaturated trisubstituted double bond proton suggested that the C-12-C-13 double bond stereochemistry is E(8). The results discussed above were consistent with the structure proposed for 1.

The in vitro I_{50} for **1** was 6.3×10^{-5} M, against rat (Wistar strain) brain AcchE.

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.— Melting points are uncorrected. Optical rotations were measured with a Jasco Dip 370 polarimeter. ¹H-nmr (400 MHz) and ¹³C-nmr (50 MHz) spectra were recorded on a Varian Unity 400 MHz and a Varian Gemini spectrometer, respectively, using TMS as internal standard. Chemical shifts were reported in δ (ppm) values and coupling constants (J) in Hz. Elemental analysis was carried out on a Perkin-Elmer 240C. Uv and ir were recorded on a Shimadzu spectrophotometer. Mass spectra were recorded on a Finnigan Mat 1020.

COLLECTION, EXTRACTION, AND ISOLATION. The soft coral S. dissecta was collected by hand on intertidal rocks at Mandapam coast (N 17°, E 83°) in India during September 1991. A voucher specimen (IIC-91-A-030) is on deposit at the National Institute of Oceanography museum, Goa, India. A freshly collected specimen (3 kg) was extracted with CH2Cl2-MeOH (1:1) (2 liters) at room temperature three times. The combined extract was filtered, and the solvent was removed under reduced pressure. The crude extract (3 g) was subjected to gel filteration chromatography (Sephadex LH-20) using CH₂Cl₂-MeOH (1:1) as eluent. Repeated cc on Si gel using hexane/EtOAc gradients yielded pure compound 1 (60 mg) as shining needles: mp 170-172° (MeOH). Elemental analysis: found C 62.9%, H 6.76%; required for $C_{22}H_{28}O_{8}$, C 62.8%, H 6.72%. Uv $\lambda \max$ (MeOH) nm (ϵ) 216 (6676), 245 (3788); ir ν max (KBr) cm⁻¹ 3460, 1705, 1641, 1606, 1559, 1435, 1209, 1085; ¹H and ¹³C nmr see Table 1; eims m/z (%) $[M-H_2O]^+$ 402 (10), 370 (15), 253 (20), 205 (50), 168 (100).

ACETYLATION OF **1**.—A solution of **1** (10 mg) in Ac₂O/pyridine (0.5 ml) was allowed to stand at room temperature for one day. The crude product was chromatographed on Si gel to give the monoacetate **2** (10 mg): uv λ max (MeOH) nm (ϵ) 220 (10000), 245 (5666); ir ν max (neat) cm⁻¹ 3430, 1736, 1704, 1634, 1605, 1559, 1430, 1223, 1076; ¹H nmr see Table 1; eims *m*/*z* (%) [M]⁺ 462 (5), 402 (8), 370 (10), 253 (18), 205 (50), 168 (100).

ACKNOWLEDGMENTS

We thank Department of Ocean Development, New Delhi for the financial support in the form of a scheme. We are indebted to Dr. (Mrs.) V. Jayasree, NIO, Goa, India for identification of the soft coral.

LITERATURE CITED

- 1. M.G. Missakian, B.J. Burreson, and P.J. Scheuer, *Tetrahedron*, **31**, 2513 (1975).
- M.B. Ksebati, L.S. Ciereszko, and F.J. Schmitz, J. Nat. Prod., 47, 1009 (1984).
- B.F. Bowden, J.C. Coll, and A.D. Wright, Aust. J. Chem., 42, 757 (1989).
- 4. A.E. Wright, N.S. Burres, and G.K. Schulte, Tetrahedron Lett., 3491 (1989).
- Y. Kashman, M. Bodner, J.S. Finer-Moore, and J. Clardy, *Experientia*, 36, 891 (1980).
- J.C. Braekman, D. Daloze, B. Tursch, S.C. Hull, J.P. Declercq, G. Germain, and M. Van Meerssche, *Experientia*, 36, 893 (1980).
- R.W. Dunlop and R.J. Wells, Aust. J. Chem., 32, 1345 (1979).
- Y. Uchio, H. Toyota, H. Nozaki, M. Nakayama, Y. Nishizono, and T. Hase, *Tetrahedron Lett.*, 4089 (1981).

Received 5 October 1992